
Full Depth Reclamation Additive Selection Guidelines

In-Place Recycling Conference Salt Lake City June 3, 08

Outline

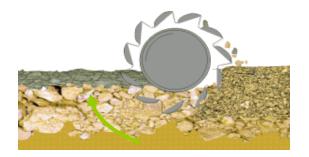
- □ FDR overview
- Soil tests and classification review
- Additive types and selection guidelines
 - Traditional additives
 - Less traditional additives
- Concluding remarks

Dull Depth Reclamation (FDR)

FDR*: Rehabilitation technique where full thickness of asphalt pavement & predetermined portion of underlying materials are uniformly pulverized & blended to an upgraded, homogenous base material

*Asphalt Recycling & Reclamation Association

FDR Benefits

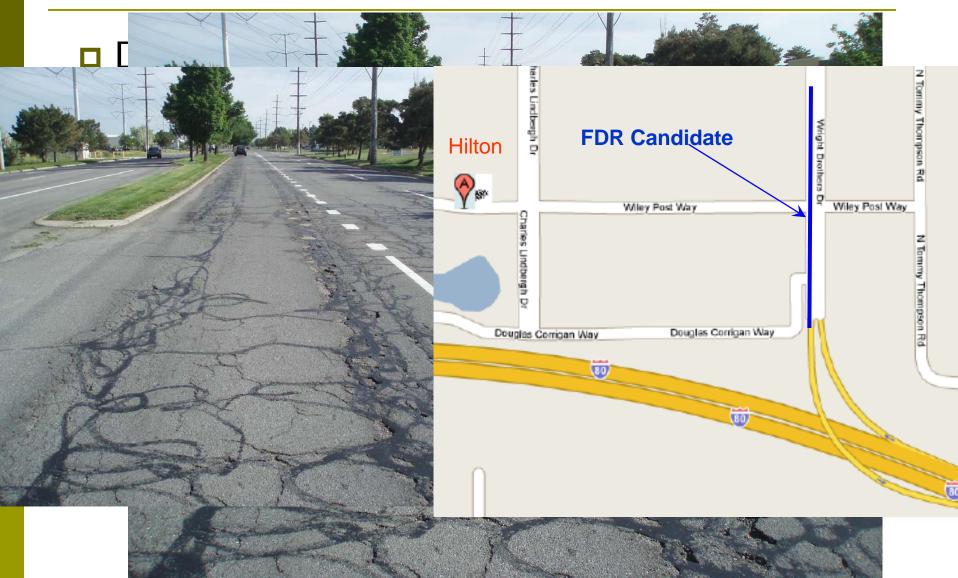

Sustainability:

- In place recycling/Preserve natural resources
- Lower energy and carbon foot print
- Reduce construction time and user delays
- Maximize pavement performance through improved uniform support (long term strength and durability)
- Upgrade marginal base materials

FDR Benefits (Cont.)

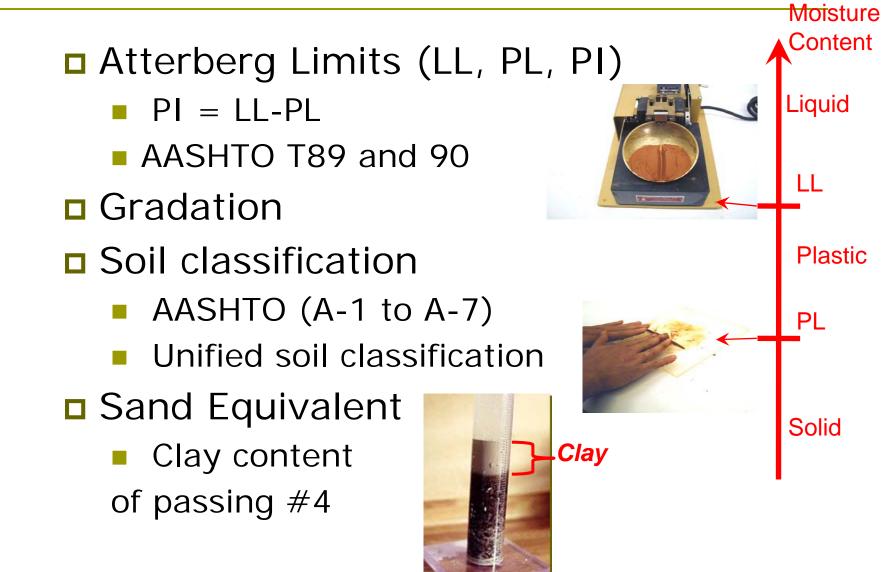
- Disrupt crack patterns minimizing potential for reflective cracking
- Profile and cross slope can be adjusted
- Limit utility interference
- Keep roadway opened during rehabilitation
- Cost effectiveness

Definitions



- Mechanical stabilization 1st step in reclamation; also used to describe FDR without addition of binder (Pulverization)
- Chemical stabilization FDR with chemical additive (Calcium or Magnesium Chloride, Lime, Fly Ash, Kiln Dust, Portland Cement, etc.)
- Bituminous stabilization FDR with asphalt emulsion, emulsified recycling agent, or foamed / expanded asphalt additive

<u>Combination</u> stabilization Any 2 or more of above


FDR Candidate

Additive Selection

- It is important to have a basic understanding of how the additives work:
 - Binding
 - Coating
 - Formation of new compounds
- It is necessary to characterize the materials to be treated:
 - Gradation
 - Plasticity (Liquid Limit, Plastic Limit and Plastic Index)
 - Soil classification

Test Review

AASHTO Soil Classification

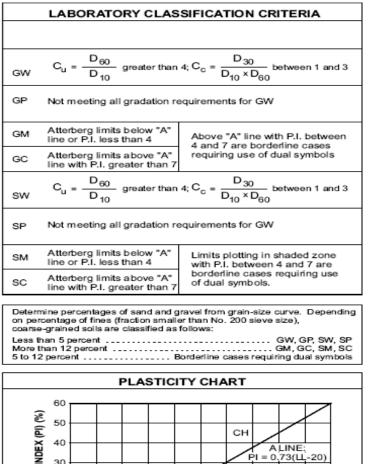
----269.0500 Trad64(N)903 (nat-0.9.* [400)n91x ma)-644(k)778x40267 T400nFaw -11(-4I dfhk)9(mi)90 that IJ00.741406503 T

10 max 10 max 11 min 11 min 10 max 10 max 11 min 11 min

Usual Types of Significant Constituent Materials Stone Fragments Gravel and Sand Fine Sand Silty or Clayey Gravel and Sand Silty Soils

Clayey Soils

General Rating as Subgrade


Excellent to Good

Fair to Poor

Plasticity index of A-7-5 subgroup is equal to or less than LL minus 30. Plasticity index of A-7-6 subgroup is greater than LL minus 30

Unified Soil Classification

			SE-GRAINED SOILS										
(more than			rial is larger than No. 200 sieve size.)										
	CI	ean G	Gravels (Less than 5% fines)	GW	~	D	60			_		D_{3}	0
GRAVELS More than 50% of coarse		зw	Well-graded gravels, gravel-sand mixtures, little or no fines		W $C_u = \frac{D_{60}}{D_{10}}$ greater than 4; $C_c = \frac{D_{30}}{D_{10} \times D_c}$					D ₆			
		ЗP	Poorly-graded gravels, gravel-sand mixtures, little or no fines	GP	GP Not meeting all gradation requirements for							r G	
fraction larger than No. 4	Gr	ravels	with fines (More than 12% fines)										
sieve size		эм	Silty gravels, gravel-sand-silt mixtures	GM		rberg limits below "A" or P.I. less than 4					Above "A" li 4 and 7 are		
	0	эс	Clayey gravels, gravel-sand-clay mixtures	GC	GC Atterberg limits ab line with P.I. great					"A" requiring			
	CI	ean S	ands (Less than 5% fines)			D						Da	_
SANDS	s	sw	Well-graded sands, gravelly sands, little or no fines	sw	Cu	=	10	greate	er thar	14; C	c = [D ₁₀ ×	D ₆
50% or more of coarse	s	SP	Poorly graded sands, gravelly sands, little or no fines	SP	Not meeting all gradation requirements for 0					r G			
fraction smaller than No. 4	Sa	ands y	vith fines (More than 12% fines)										
sieve size	s	зм	Silty sands, sand-silt mixtures	SM		or P.I. less than 4 with P.I				plotting i I. betwe	wee		
		SC	Clayey sands, sand-clay mixtures	sc	SC Atterberg limits above "A" borderline ca line with P.I. greater than 7								
	F	INE-C	GRAINED SOILS										
(50% or m	ore of m	nateri	al is smaller than No. 200 sieve size.)		mine pe								
SILTS		ML flour, silty of clayey fine sands, rock coarse-gra silts with slight plasticity More than			parse-grained soils are classified as follows: ess than 5 percent lore than 12 percent to 12 percent Borderline cases rec								
CLAYS			Inorganic clays of low to medium	5 to 1	2 perce	ont				Borde	rline	cases	rec
Liquid limit		CL	plasticity, gravelly clays, sandy clays, silty clays, lean clays	PLASTICITY CHART									
less than 50%	<u>F4</u>	-+	any days, idan days	┨┝───				-LA	STIC	ΠY	CHA	AR I	
50%	巨い	JL	Organic silts and organic silty clays of		60								—
	ET)		low plasticity	1									
		мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils,		50 · 50 ·							сн	
SILTS AND CLAYS Liquid limit 50% or greater			elastic silts	1 2	3 40							1	₽
		сн	Inorganic clays of high plasticity, fat clays						CL			мн	÷+
		эн	Organic clays of medium to high		10								\square
			plasticity, organic silts	1 1	-		CL+ML		ML&	OL			
HIGHLY ORGANIC SOILS	<u>~~</u> 또 소 F	∍т	Peat and other highly organic soils		0	0 1	0 2		04 LIQUI				70 6)

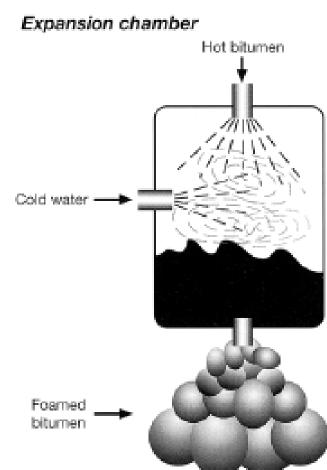
MH&OH

80

90 100

Additive Selection Guidelines

Lime (3 to 6%)


- Formed by the decomposition of limestone at elevated temperatures (Calcium carbonate)
- Cation exchange and flocculation/agglomeration
- Chemical reaction from Lime, Water, Silica and Alumina in clay results in new cementicious compounds
- Selection: PI>10 and P200<25 or PI 10-30 and P200>25, SO₄ in clay < 3000 ppm</p>

Portland Cement (3 to 6%)

- Finely ground calcium silicates and aluminates with small percentages of magnesium oxide, gypsum and uncombined oxides
- Hydration of the calcium silicates produces a cementicious paste predominatly in the form of calcium silicate hydrate (CSH)
- Type II cement typically used
- Selection: PI < 10</p>

□ Foamed asphalt (1 to 3%) (+cement)

- High temperature asphalt (>300F) is injected with a small amount of water (about 2% BWA)
- Foaming and increase of surface area temporarily allows for coating of the fines
- **5%**<#200<20%

Emulsified asphalt (3 to 6%)

- Cationic or anionic
- Typically 60-65% residue and 35-40% water, emulsifiers and chemicals
- Selection: SE > 30 and Passing#200 < 20% (100% base to 100% RAP)

Material Type	Well- graded gravel	Poorly graded gravel	Silty gravel	Clayey gravel	Well- graded sand*	Poorly graded sand	Silty sand	Clayey sand	Silt, Silt with sand	Lean clay	Organic silt / organic lean clay	Elastic silt	Fat clay, fat clay with sand	Pros	Cons
USCS	GW	GP	GM	GC	SW	SP	SM	SC	ML	CL	OL	MH	СН		
AASHTO	A-1-a	A-1-a	A-1-b	A-1-b or A-2-6	А-1-b	A-3 or A-1-b	A-2-4 or A-2-5	A-2-6 or A-2-7	A-4 or A-5	A-6	A-4	A-5 or A-7-5	A-7-6		
Emulsion FDR / GBS Best if SE > 30 and P200 < 20* (100% base to 100% RAP)														Project / material selection, engineered design/emulsion, field support, same day return to traffic, quick overlay	Cannot handle high clay content
Foamed asphalt P200 5 to 20% and follow max. density grad.														Same day return to traffic, quick overlay	Safety, gradation, maintain high asphalt temperature
Portland cement PI<10														Quick set, high strength, compatible with many soils	Dust, early cracking, little overlay bonding
Lime PI>10 and P200<25 <u>or</u> PI 10-30 and and P200>25, SO ₄ in clay < 3000 ppm														Quick set, high strength	Dust, early cracking, potential sulfate heave

Suggested Additives for Various Aggregate Bases and Soils – Blend of existing bituminous and base / soil

- Magnesium or Calcium chloride (1%)
 - Salts
 - Can result in increased pore water surface tension, producing an increase in apparent cohesion, resulting in strength improvement
 - Susceptible to leaching
 - Selection: 3 to 5% clay beneficial, 8%<#200<12%</p>

Less Traditional Additives

Ionic

- Acid and alkaline additives
- Loss of double-layer water in clay (this is more important for montmorillonite clay where the double-layer water is larger than the clay sheets)
- Reactions occur over long time periods
- Most suitable to silts and clays, where the electrical charges of the particles and the pore fluid significantly affect soil behavior

Less Traditional Additives (Cont.)

Enzymes

- Organic molecules that catalyze very specific chemical reactions if conditions are right
- Reactions can take long time periods
- Only small dosages are needed
- Very soil specific likely clay with some organic content

Less Traditional Additives

Lignosulfonates

- Derived from lignin that binds cellulose fibers together
- Coats individual particles with a thin adhesive-like film
- Primarily cementing agents with possible minor chemical effects
- Capacity for ion exchange
- Water soluble and susceptible to leaching

Less Traditional Additives (Cont.)

Petroleum Resins

- Asphalt emulsions and synthetic isoalkane fluids
- Primary binding mechanism is physical bonding
- Generally not used in fine-grained materials

Tree Resins

- Relatively unprocessed by-products of timber and paper industries
- Act similar to lignosulfonates but are less susceptible to leaching

Less Traditional Additives (Cont.)

Polymer Stabilizers

- Typically vinyl acetates or acrylic copolymers suspended in an emulsion
- Excellent waterproofing potential
- Increased benefit if a small percentage of Portland cement is used
- Generally not used in fine-grained materials

Stabilization Additive	Proposed Primary Stabilization Mechanism	Material Compatibility	Strength Improvement	Volume Stability	Waterproofing
Ionic	Cationic exchange and flocculation	Fine-grained soils	Low- medium	Low- medium	Low-medium
Enzymes	Organic molecule encapsulation	Fine-grained soils	Low	Low- medium	Low
Ligno- sulfonates	Physical bonding / cementation	Granular soils	Medium	Low- medium	Low
Salts (Calcium, Magnesium)	Hygroscopy / cation exchange and flocculation / cementation	All	Low- medium	Low	Low
Petroleum resins	Physical bonding / cementation	Granular soils	Medium	Medium	High
Polymers	Physical bonding / cementation	Granular soils	Medium- high	Medium	Medium-high
Tree resins	Physical bonding / cementation	Granular soils	Medium- high	Medium	Medium-high

FDR additive selection is based on:

- Materials type (at the representative depth)
- Gradation
- Plasticity
- Manufacturer's recommendations and additional testing and are suggested for less traditional additives
- Combination of additives can be used

Summary (Cont.)

Other important considerations for successful FDR applications

- Safety, reliability, ease of construction
- Performance objectives
- Additive loading, design and testing
- Specifications
- QC/QA requirements

Thank you for your interest in FDR

Stephane Charmot, PE Cell: 801-673-6579 scharmot@semgrouplp.com

City of El Centro, CA 2008 FDR Project